State of Illinois Department Of Transportation ## CONSTRUCTION INSPECTOR'S CHECKLIST FOR STORM SEWERS This checklist has been prepared to provide the field inspector a summary of easy-to-read step-by-step requirements relative to the proper installation of Storm Sewers (Section 550 of the Standard Specifications). The following questions are based on and referenced to information found in the Standard and Supplemental Specifications, Highway Standards and appropriate sections of the Construction Manual. # 1. FIELD STAKING As you stake the pipe: Are you checking with the Contractor to see what offset and spacings a. are needed in the stakes? Are you checking the inlet and outlet flow line elevations to make sure b. they will meet existing or proposed appurtenance grades? Are you checking the horizontal alignment to make sure it satisfies C. the field conditions? (The pipe must be placed in a straight line between appurtenances.) d. If water mains not shown on the plans or not located as shown on the plans are encountered, have you checked local ordinances or EPA requirements for protection by horizontal or vertical separation or protection by special material and joints? 2. **INSPECTION OF DELIVERED PIPE SECTIONS** Are you visually inspecting each section of delivered pipe for defects? a. Note: Concrete pipe sections are subject to rejection for the following reasons: (1) Broken bells and spigots (2) Fractures or cracks passing through the walls or joints or those sufficient to impair strength, durability or serviceability of the product (3) Insufficient cover of concrete over steel (ghosting) (4) Defects that indicate imperfect proportioning, mixing and molding: i.e. honeycomb, patching, etc. (5) Insecure attachment of branches or spurs. | 3. PIPE MARKINGS | |------------------| |------------------| | Have you checked the plans to see if a particular kind of material is specified for the installation? | | |--|--| | Have you checked the plans to determine the storm sewer "class" and "type" so that alternate materials and strengths (when the material is not specified) can be chosen from the Tables in Article 550.03? | | | Have you checked the delivered pipe to make certain the pipe markings correspond with the kinds of materials permitted by Article 550.03 and the table? | | Required pipe markings: a. Reinforced Concrete Culvert, Storm Drain and Sewer Pipe (AASHTO M170 or ASTM C76) Reinforced Concrete Elliptical Culvert, Storm Drain and Sewer Pipe (AASHTO M207 or ASTM C507) Reinforced Concrete Arch Culvert, Storm Drain and Sewer Pipe (AASHTO M206 or ASTM C506) - (1) Pipe class and specification designation: - (a) Circular = I through V - (b) Arch = A II through IV - (c) Elliptical = HEA, HE I through IV VE - II through VI - (2) Date of manufacture - (3) Name or trademark of the manufacturer - (4) Identification of plant - b. Concrete Sewer, Storm Drain, and Sewer Pipe (AASHTO M86 or ASTM C14) - (1) Pipe class and specification designation Class - (a) Class: I through III - (2) Date of manufacture - (3) Name or trademark of the manufacturer - (4) Identification of plant c. Polyvinyl Chloride (PVC) Pipe – 10", 12", 15" nominal diameter (AASHTO M278) - (1) Manufacturer's name or trademark - (2) Nominal size - (3) Specification designation M278 - (4) Plant designation code - d. Polyvinyl Chloride (PVC) Pipe 18" through 36" nominal diameter (ASTM F679) - (1) Manufacturer's name or trademark and code - (2) Nominal pipe size - (3) Minimum cell classification - (4) Pipe stiffness designation: PS 46 PVC Sewer Pipe - (5) Specification designation ASTM F679 - e. Corrugated Polyvinyl Chloride (PVC) Pipe with a Smooth Interior (ASTM F949) - (1) Manufacturer's name, trade name or trademark - (2) Nominal pipe size - (3) PVC and minimum cell classification - (4) Extrusion code - (5) Specification designation ASTM F949 - f. Polyvinyl Chloride (PVC) Profile Wall Pipe 794 (ASTM F794) - (1) Manufacturer's name, trade name or trademark, and code - (2) Nominal pipe size - (3) Minimum cell classification - (4) Legend "PS 46 PVC Sewer Pipe" or "PS 10 PVC Sewer Pipe" - (5) Specification designation ASTM F794 - g. Extra Strength Clay Pipe (ASTM C700) Clay Sewer Pipe (ASTM C700) - (1) Initials or name of manufacturer - (2) Location of plant - (3) Words "Extra Strength" or the symbol "ES" when applicable #### 4. UNSUITABLE SOIL REMOVAL AND REPLACEMENT | If soft, spongy or other unsuitable soil is encountered at pipe grade, is all such unsuitable soil being removed for the width of the trench and replaced with well compacted moist fine aggregate? (Art. 550.04) | | |---|--| | Is the removal and replacement of unsuitable material below plan bedding grade being paid for in accordance with Article 109.04? (Art. 550.09) | | ## 5. TRENCH EXCAVATION (Art. 550.04) ## CASE I # CASE II (When trench depth < 1.5m (5') and when sheeting or shoring is not required): (When trench depth \geq 1.5m (5') or when sheeting or shoring is required): Is the trench being excavated so that vertical faces are maintained at least to the elevation of the top of pipe? For trench depths of 1.5 m (5 ft.) or more, the Contractor shall provide trench protection according to the applicable standards for work place safety. Is the Contractor providing to the Engineer, in writing, his/her procedures for fulfilling the safety requirements for trench protection? ## 6. OPTIONAL TRENCH CONFIGURATIONS (When trench depth ≥ 1.5 m (5 feet) (Art. 550.04) Optional trench configurations shall be constructed in accordance with OSHA requirements contained in the Code of Federal Regulations Labor 29 Part 1926 Subpart P - Excavations. # 7. ROCK REMOVAL AND REPLACEMENT (Art. 550.04) If rock (202.04) is encountered in the trench, is it being removed 200 mm (8") below the bottom of the pipe grade and replaced with well-compacted moist fine aggregate? Is the excavation of rock being paid for per cubic meter (yard) of ROCK EXCAVATION FOR STRUCTURES, or, if there is no such plan pay item, is it being paid for in accordance with Article 109.04? (Art. 550.09) ## 8. TRENCH BED PREPARATION (Art. 550.04) If the excavation has been made deeper than necessary, is only well compacted moist fine aggregate being used to bring the foundation back up to the proper grade? Is at least 100 mm (4 inches) of well compacted moist fine aggregate being placed the entire width of the trench and for the length of the pipe? # 9. <u>PIPE INSTALLATION</u> (Art. 550.06) Is the contractor, at his/her own expense, keeping the trench free of water? Is the pipe being laid from the downstream end towards the upstream end with the pipe spigots pointing toward the outlet end of the trench? Are pipe bells being placed in small cross trenches shaped in the sand bedding material? (Art. 550.04) #### 10. **JOINTS (Art. 550.06)** Are all joints in concrete sewer pipes being sealed with preformed flexible gaskets or mastic joint sealer conforming to Article 1056 or 1055 or external sealing bands conforming to Article 1057? | | | n mastic joint sealer is being used, is the joint being completely filled riped clean on the inside after the pipes have been brought together? | | | | |-----|--------|--|--|--|--| | | Are P | VC pipes joined according to ASTM D 3034? | | | | | | Are al | Il sections being pushed or pulled into place to ensure tight joints? | | | | | | | Il pipes having a diameter greater than 1 m (42 inches) being "brought" with a winch, come-a-long or other positive means? | | | | | 11. | HAND | DLING HOLES (Art. 550.06) | | | | | | | Il lifting holes being filled with precast concrete plugs and sealed and ed with mastic or mortar? | | | | | 12. | BACK | BACKFILL MATERIALS (Art. 550.07) | | | | | | a. | Does the backfill material from the trench bed up to the midpoint of the pipe consist of moist fine aggregate meeting the gradations specified in Article 1003.04? | | | | | | | If the Contractor is using PVC pipe, is the entire length and width of the trench being backfilled with moist fine aggregate placed in 200 mm (8 inch) lifts, loose measurement and compacted to at least 85% density to a height of at least 300 mm (1 foot) above the pipe? | | | | | | | If the Contractor is using reinforced concrete pipe and the trench is within 600 mm (2 feet) of the pavement structure, is the entire length and width of the trench being backfilled with moist fine aggregate placed in 200 mm (8 inch) lifts, loose measurement and compacted to at least 85% density to a height of at least 300 mm (1 foot) above the pipe? | | | | | | b. | Are all trenches which are made in the subgrade of the proposed improvement and all trenches outside of the subgrade where the inner edge of the trench is within 600 mm (2 feet) of the edge of the proposed pavement, curb, gutter, curb and gutter, stabilized shoulder or sidewalk being backfilled with the pay item TRENCH BACKFILL? | | | | Note: The maximum pay limits for the volume of TRENCH BACKFILL shall not exceed the following: ## Depth = Midpoint of pipe to finished surface Width = $$225 \text{ mm} + \text{OD} + 225 \text{ mm}$$ (when trench depth < 1.5 meters) $500 \text{ mm} + \text{OD} + 500 \text{ mm}$ (when trench depth $\geq 1.5 \text{ meters}$) $9" + \text{OD} + 9"$ (when trench depth < 5') $9^{\circ} + OD + 9^{\circ}$ (when trench depth $< 5^{\circ}$) $18^{\circ} + OD + 18^{\circ}$ (when trench depth $\ge 5^{\circ}$) c. Are all other trenches which are excavated outside the limits of the subgrade plus 600 mm (2 feet) being backfilled with the excavated materials? ## 13. BACKFILL COMPACTION REQUIREMENTS (Art. 550.07) Is all backfill material from the bed up to 300 mm (12") over the pipe being placed in layers not exceeding 200 mm (8") thick loose measurement and compacted to your satisfaction with ramming and tamping tools? Is all backfill material above the first 300 mm (12") over the pipe being compacted in accordance with one of the following optional methods: Method 1 - The material shall be deposited in uniform layers not exceeding 300 mm (12") (200 mm (8") if TRENCH BACKFILL is specified), loose measure and compacted with ramming and tamping tools. Method 2 - The material shall be deposited in uniform layers not exceeding 300 mm (12") thick, loose measure and each layer shall be either inundated or deposited in water. Method 3 - The trench shall be backfilled with loose material and settlement secured by introducing water through holes jetted into the backfill to a point approximately 600 mm (2 feet) above the top of the pipe. The holes should be spaced no further apart than 2 m (6 feet). INSTALLATION COMPLETION (Art. 550.07) a. If water was used to compact the backfill or if TRENCH BACKFILL was required, is it being allowed to settle and dry for at least 10 days before surface course or pavement is constructed on it? If water was used to compact the backfill, are all depressions being filled with sufficient backfill material? Storm Sewers If the excavation was made across the shoulders or private property, is all disturbed top soil being replaced and the whole area left in a neat and presentable condition? b. Are all PVC storm sewers being tested for deflection not less than 30 days after the backfill is completed? #### 15. <u>DOCUMENTATION OF FINAL QUANTITIES</u> Rev. 12/18/02 14. STORM SEWER - Lineal meters(feet): In-place measurements, each run measured to the nearest 0.1 meter (foot). TRENCH BACKFILL - Cubic meters (yards): - a. BC-981 (Plan quantity acceptance); or - b. Trench measurements and calculations; or - c. Trench measurements and standard tables. Revised to conform with the Standard Specifications for Road and Bridge Construction Adopted January 1, 2002